Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
1.
Cell Genom ; 4(5): 100544, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38692281

ABSTRACT

Chronic inflammation is a hallmark of age-related disease states. The effectiveness of inflammatory proteins including C-reactive protein (CRP) in assessing long-term inflammation is hindered by their phasic nature. DNA methylation (DNAm) signatures of CRP may act as more reliable markers of chronic inflammation. We show that inter-individual differences in DNAm capture 50% of the variance in circulating CRP (N = 17,936, Generation Scotland). We develop a series of DNAm predictors of CRP using state-of-the-art algorithms. An elastic-net-regression-based predictor outperformed competing methods and explained 18% of phenotypic variance in the Lothian Birth Cohort of 1936 (LBC1936) cohort, doubling that of existing DNAm predictors. DNAm predictors performed comparably in four additional test cohorts (Avon Longitudinal Study of Parents and Children, Health for Life in Singapore, Southall and Brent Revisited, and LBC1921), including for individuals of diverse genetic ancestry and different age groups. The best-performing predictor surpassed assay-measured CRP and a genetic score in its associations with 26 health outcomes. Our findings forge new avenues for assessing chronic low-grade inflammation in diverse populations.


Subject(s)
C-Reactive Protein , DNA Methylation , Epigenome , Inflammation , Humans , Inflammation/genetics , Inflammation/blood , Male , C-Reactive Protein/analysis , C-Reactive Protein/genetics , C-Reactive Protein/metabolism , Female , Middle Aged , Adult , Cohort Studies , Aged , Chronic Disease
2.
bioRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38559237

ABSTRACT

DNA methylation (DNAm) at specific sites can be used to calculate 'epigenetic clocks', which in adulthood are used as indicators of age(ing). However, little is known about how these clock sites 'behave' during development and what factors influence their variability in early life. This knowledge could be used to optimize healthy aging well before the onset of age-related conditions. Here, we leveraged results from two longitudinal population-based cohorts (N=5,019 samples from 2,348 individuals) to characterize trajectories of adult clock sites from birth to early adulthood. We find that clock sites (i) diverge widely in their developmental trajectories, often showing non-linear change over time; (ii) are substantially more likely than non-clock sites to vary between individuals already from birth, differences that are predictive of DNAm variation at later ages; and (iii) show enrichment for genetic and prenatal environmental exposures, supporting an early-origins perspective to epigenetic aging.

3.
Vaccines (Basel) ; 12(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38543936

ABSTRACT

The use of effective vaccines is among the most important strategies for the prevention and progressive control of transboundary infectious animal diseases. However, the use of vaccine is often impeded by the cost, a lack of cold chains and other factors. In resource-limited countries in Africa, one approach to improve coverage and reduce cost is to vaccinate against multiple diseases using combined vaccines. Therefore, the objective of this study was to evaluate a combined vaccine for the prevention and control of Lumpy Skin Disease (LSD), Contagious Bovine Pleuropneumonia (CBPP) and Rift Valley fever (RVF). The LSD and CBPP were formulated as a combined vaccine, and the RVF was formulated separately as live attenuated vaccines. These consisted of a Mycoplasma MmmSC T1/44 strain that was propagated in Hayflick-modified medium, RVF virus vaccine, C13T strain prepared in African green monkey cells (Vero), and the LSDV Neethling vaccine strain prepared in primary testis cells. The vaccines were tested for safety via the subcutaneous route in both young calves and pregnant heifers with no side effect, abortion or teratogenicity. The vaccination of calves induced seroconversions for all three vaccines starting from day 7 post-vaccination (PV), with rates of 50% for LSD, 70% for CBPP and 100% for RVF, or rates similar to those obtained with monovalent vaccines. The challenge of cattle vaccinated with the LSD/CBPP and the RVF vaccine afforded full protection against virulent strains of LSDV and RVFV. A satisfactory level of protection against a CBPP challenge was observed, with 50% of protection at 6 months and 81% at 13 months PV. A mass vaccination trial was performed in four regions of Burkina Faso that confirmed safety and specific antibody responses induced by the vaccines. The multivalent LSD/CBPP+RVF vaccine provides a novel and beneficial approach to the control of the three diseases through one intervention and, therefore, reduces the cost and improves vaccination coverage.

4.
bioRxiv ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38105971

ABSTRACT

Importance: DNA methylation (DNAm) provides a plausible mechanism by which adverse exposures become embodied and contribute to health inequities, due to its role in genome regulation and responsiveness to social and biophysical exposures tied to societal context. However, scant epigenome-wide association studies (EWAS) have included structural and lifecourse measures of exposure, especially in relation to structural discrimination. Objective: Our study tests the hypothesis that DNAm is a mechanism by which racial discrimination, economic adversity, and air pollution become biologically embodied. Design: A series of cross-sectional EWAS, conducted in My Body My Story (MBMS, biological specimens collected 2008-2010, DNAm assayed in 2021); and the Multi Ethnic Study of Atherosclerosis (MESA; biological specimens collected 2010-2012, DNAm assayed in 2012-2013); using new georeferenced social exposure data for both studies (generated in 2022). Setting: MBMS was recruited from four community health centers in Boston; MESA was recruited from four field sites in: Baltimore, MD; Forsyth County, NC; New York City, NY; and St. Paul, MN. Participants: Two population-based samples of US-born Black non-Hispanic (Black NH), white non-Hispanic (white NH), and Hispanic individuals (MBMS; n=224 Black NH and 69 white NH) and (MESA; n=229 Black NH, n=555 white NH and n=191 Hispanic). Exposures: Eight social exposures encompassing racial discrimination, economic adversity, and air pollution. Main outcome: Genome-wide changes in DNAm, as measured using the Illumina EPIC BeadChip (MBMS; using frozen blood spots) and Illumina 450k BeadChip (MESA; using purified monocytes). Our hypothesis was formulated after data collection. Results: We observed the strongest associations with traffic-related air pollution (measured via black carbon and nitrogen oxides exposure), with evidence from both studies suggesting that air pollution exposure may induce epigenetic changes related to inflammatory processes. We also found suggestive associations of DNAm variation with measures of structural racial discrimination (e.g., for Black NH participants, born in a Jim Crow state; adult exposure to racialized economic residential segregation) situated in genes with plausible links to effects on health. Conclusions and Relevance: Overall, this work suggests that DNAm is a biological mechanism through which structural racism and air pollution become embodied and may lead to health inequities.

5.
Front Toxicol ; 5: 1253442, 2023.
Article in English | MEDLINE | ID: mdl-37808180

ABSTRACT

Introduction: Within human epidemiological studies, associations have been demonstrated between grandparental exposures during childhood and grandchildren's outcomes. A few studies have assessed whether asthma has ancestral associations with exposure to cigarette smoking, but results have been mixed so far. Material and methods: In this study we used four generations: (F0 great-grandparents, F1 grandparents, F2 parents, F3 study children) of the Avon Longitudinal Study of Parents and Children (ALSPAC) to determine whether there is evidence of associations between asthma in generations F2 or F3 and exposures to severe trauma in childhood and/or active cigarette smoking during the adolescence of grandmothers and grandfathers in generations F0 and F1 respectively, or of a history of a F0 or F1 grandmother smoking during pregnancy. Results: We have shown that: a) stress exemplified by the death of a F1 grandparent's parent during the grandparents' childhood was associated with increased risk of asthma in generation F3, especially if the grandparent involved was the paternal grandmother; b) if the grandparents of generations F0 or F1 smoked during adolescence (i.e. < 17 years), their grandchildren in generations F2 and F3 were more likely to have a history of asthma; c) paternal F1 grandmother's smoking in pregnancy was associated with her F3 grandchild's asthma at age 7; d) There were differences between the results for the grandsons and granddaughters of the paternal grandmother with exposure to smoking in adolescence and with smoking in pregnancy. e) The addition of all of the individual exposure variables to the different analyses often provided a considerable increase in goodness of fit compared with only adding demographic factors associated with asthma at P < 0.10 such as social class; this was particularly true when all four exposure variables were combined in one model, suggesting possible synergistic effects between them. Discussion: We have shown associations between all four types of exposure to the grandparents to be associated with asthma in the grandchildren, such that the results both depended on whether the male or female line was involved, and the sex of the grandchildren. It was notable that the paternal grandmother was particularly involved in many of the associations. We emphasize that these are exploratory analyses, that asthma diagnostic criteria likely changed over time and may not be consistent between generations, and that the results should be tested in other cohorts.

6.
Environ Epigenet ; 9(1): dvad005, 2023.
Article in English | MEDLINE | ID: mdl-37564905

ABSTRACT

Epigenetic clocks are increasingly being used as a tool to assess the impact of a wide variety of phenotypes and exposures on healthy ageing, with a recent focus on social determinants of health. However, little attention has been paid to the sociodemographic characteristics of participants on whom these clocks have been based. Participant characteristics are important because sociodemographic and socioeconomic factors are known to be associated with both DNA methylation variation and healthy ageing. It is also well known that machine learning algorithms have the potential to exacerbate health inequities through the use of unrepresentative samples - prediction models may underperform in social groups that were poorly represented in the training data used to construct the model. To address this gap in the literature, we conducted a review of the sociodemographic characteristics of the participants whose data were used to construct 13 commonly used epigenetic clocks. We found that although some of the epigenetic clocks were created utilizing data provided by individuals from different ages, sexes/genders, and racialized groups, sociodemographic characteristics are generally poorly reported. Reported information is limited by inadequate conceptualization of the social dimensions and exposure implications of gender and racialized inequality, and socioeconomic data are infrequently reported. It is important for future work to ensure clear reporting of tangible data on the sociodemographic and socioeconomic characteristics of all the participants in the study to ensure that other researchers can make informed judgements about the appropriateness of the model for their study population.

7.
Clin Epigenetics ; 15(1): 131, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37649101

ABSTRACT

BACKGROUND: Experimental studies suggest that exposures may impact respiratory health across generations via epigenetic changes transmitted specifically through male germ cells. Studies in humans are, however, limited. We aim to identify epigenetic marks in offspring associated with father's preconception smoking. METHODS: We conducted epigenome-wide association studies (EWAS) in the RHINESSA cohort (7-50 years) on father's any preconception smoking (n = 875 offspring) and father's pubertal onset smoking < 15 years (n = 304), using Infinium MethylationEPIC Beadchip arrays, adjusting for offspring age, own smoking and maternal smoking. EWAS of maternal and offspring personal smoking were performed for comparison. Father's smoking-associated dmCpGs were checked in subpopulations of offspring who reported no personal smoking and no maternal smoking exposure. RESULTS: Father's smoking commencing preconception was associated with methylation of blood DNA in offspring at two cytosine-phosphate-guanine sites (CpGs) (false discovery rate (FDR) < 0.05) in PRR5 and CENPP. Father's pubertal onset smoking was associated with 19 CpGs (FDR < 0.05) mapped to 14 genes (TLR9, DNTT, FAM53B, NCAPG2, PSTPIP2, MBIP, C2orf39, NTRK2, DNAJC14, CDO1, PRAP1, TPCN1, IRS1 and CSF1R). These differentially methylated sites were hypermethylated and associated with promoter regions capable of gene silencing. Some of these sites were associated with offspring outcomes in this cohort including ever-asthma (NTRK2), ever-wheezing (DNAJC14, TPCN1), weight (FAM53B, NTRK2) and BMI (FAM53B, NTRK2) (p < 0.05). Pathway analysis showed enrichment for gene ontology pathways including regulation of gene expression, inflammation and innate immune responses. Father's smoking-associated sites did not overlap with dmCpGs identified in EWAS of personal and maternal smoking (FDR < 0.05), and all sites remained significant (p < 0.05) in analyses of offspring with no personal smoking and no maternal smoking exposure. CONCLUSION: Father's preconception smoking, particularly in puberty, is associated with offspring DNA methylation, providing evidence that epigenetic mechanisms may underlie epidemiological observations that pubertal paternal smoking increases risk of offspring asthma, low lung function and obesity.


Subject(s)
Asthma , DNA Methylation , Male , Humans , Smoking/adverse effects , Smoking/genetics , Tobacco Smoking , Epigenesis, Genetic , Cytosine , Guanine , Chromosomal Proteins, Non-Histone
9.
Genome Biol ; 24(1): 176, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37525248

ABSTRACT

BACKGROUND: Pinpointing genetic impacts on DNA methylation can improve our understanding of pathways that underlie gene regulation and disease risk. RESULTS: We report heritability and methylation quantitative trait locus (meQTL) analysis at 724,499 CpGs profiled with the Illumina Infinium MethylationEPIC array in 2358 blood samples from three UK cohorts. Methylation levels at 34.2% of CpGs are affected by SNPs, and 98% of effects are cis-acting or within 1 Mbp of the tested CpG. Our results are consistent with meQTL analyses based on the former Illumina Infinium HumanMethylation450 array. Both SNPs and CpGs with meQTLs are overrepresented in enhancers, which have improved coverage on this platform compared to previous approaches. Co-localisation analyses across genetic effects on DNA methylation and 56 human traits identify 1520 co-localisations across 1325 unique CpGs and 34 phenotypes, including in disease-relevant genes, such as USP1 and DOCK7 (total cholesterol levels), and ICOSLG (inflammatory bowel disease). Enrichment analysis of meQTLs and integration with expression QTLs give insights into mechanisms underlying cis-meQTLs (e.g. through disruption of transcription factor binding sites for CTCF and SMC3) and trans-meQTLs (e.g. through regulating the expression of ACD and SENP7 which can modulate DNA methylation at distal sites). CONCLUSIONS: Our findings improve the characterisation of the mechanisms underlying DNA methylation variability and are informative for prioritisation of GWAS variants for functional follow-ups. The MeQTL EPIC Database and viewer are available online at https://epicmeqtl.kcl.ac.uk .


Subject(s)
DNA Methylation , Genomics , Humans , CpG Islands , Quantitative Trait Loci , Gene Expression Regulation , Polymorphism, Single Nucleotide , Genome-Wide Association Study/methods
10.
Lancet Child Adolesc Health ; 7(8): 532-543, 2023 08.
Article in English | MEDLINE | ID: mdl-37327798

ABSTRACT

BACKGROUND: Childhood adversity is a potent determinant of health across development and is associated with altered DNA methylation signatures, which might be more common in children exposed during sensitive periods in development. However, it remains unclear whether adversity has persistent epigenetic associations across childhood and adolescence. We aimed to examine the relationship between time-varying adversity (defined through sensitive period, accumulation of risk, and recency life course hypotheses) and genome-wide DNA methylation, measured three times from birth to adolescence, using data from a prospective, longitudinal cohort study. METHODS: We first investigated the relationship between the timing of exposure to childhood adversity between birth and 11 years and blood DNA methylation at age 15 years in the Avon Longitudinal Study of Parents and Children (ALSPAC) prospective cohort study. Our analytic sample included ALSPAC participants with DNA methylation data and complete childhood adversity data between birth and 11 years. We analysed seven types of adversity (caregiver physical or emotional abuse, sexual or physical abuse [by anyone], maternal psychopathology, one-adult households, family instability, financial hardship, and neighbourhood disadvantage) reported by mothers five to eight times between birth and 11 years. We used the structured life course modelling approach (SLCMA) to identify time-varying associations between childhood adversity and adolescent DNA methylation. Top loci were identified using an R2 threshold of 0·035 (ie, ≥3·5% of DNA methylation variance explained by adversity). We attempted to replicate these associations using data from the Raine Study and Future of Families and Child Wellbeing Study (FFCWS). We also assessed the persistence of adversity-DNA methylation associations we previously identified from age 7 blood DNA methylation into adolescence and the influence of adversity on DNA methylation trajectories from ages 0-15 years. FINDINGS: Of 13 988 children in the ALSPAC cohort, 609-665 children (311-337 [50-51%] boys and 298-332 [49-50%] girls) had complete data available for at least one of the seven childhood adversities and DNA methylation at 15 years. Exposure to adversity was associated with differences in DNA methylation at 15 years for 41 loci (R2 ≥0·035). Sensitive periods were the most often selected life course hypothesis by the SLCMA. 20 (49%) of 41 loci were associated with adversities occurring between age 3 and 5 years. Exposure to one-adult households was associated with differences in DNA methylation at 20 [49%] of 41 loci, exposure to financial hardship was associated with changes at nine (22%) loci, and physical or sexual abuse was associated with changes at four (10%) loci. We replicated the direction of associations for 18 (90%) of 20 loci associated with exposure to one-adult household using adolescent blood DNA methylation from the Raine Study and 18 (64%) of 28 loci using saliva DNA methylation from the FFCWS. The directions of effects for 11 one-adult household loci were replicated in both cohorts. Differences in DNA methylation at 15 years were not present at 7 years and differences identified at 7 years were no longer apparent by 15 years. We also identified six distinct DNA methylation trajectories from these patterns of stability and persistence. INTERPRETATION: These findings highlight the time-varying effect of childhood adversity on DNA methylation profiles across development, which might link exposure to adversity to potential adverse health outcomes in children and adolescents. If replicated, these epigenetic signatures could ultimately serve as biological indicators or early warning signs of initiated disease processes, helping identify people at greater risk for the adverse health consequences of childhood adversity. FUNDING: Canadian Institutes of Health Research, Cohort and Longitudinal Studies Enhancement Resources, EU's Horizon 2020, US National Institute of Mental Health.


Subject(s)
Adverse Childhood Experiences , Male , Adult , Female , Child , Humans , Adolescent , Infant, Newborn , Infant , Child, Preschool , Longitudinal Studies , Prospective Studies , Canada , Parents , Epigenesis, Genetic
11.
Nat Commun ; 14(1): 2912, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217515

ABSTRACT

Major depressive disorder (MDD) is a common, heterogenous, and potentially serious psychiatric illness. Diverse brain cell types have been implicated in MDD etiology. Significant sexual differences exist in MDD clinical presentation and outcome, and recent evidence suggests different molecular bases for male and female MDD. We evaluated over 160,000 nuclei from 71 female and male donors, leveraging new and pre-existing single-nucleus RNA-sequencing data from the dorsolateral prefrontal cortex. Cell type specific transcriptome-wide threshold-free MDD-associated gene expression patterns were similar between the sexes, but significant differentially expressed genes (DEGs) diverged. Among 7 broad cell types and 41 clusters evaluated, microglia and parvalbumin interneurons contributed the most DEGs in females, while deep layer excitatory neurons, astrocytes, and oligodendrocyte precursors were the major contributors in males. Further, the Mic1 cluster with 38% of female DEGs and the ExN10_L46 cluster with 53% of male DEGs, stood out in the meta-analysis of both sexes.


Subject(s)
Depressive Disorder, Major , Transcriptome , Male , Female , Humans , Transcriptome/genetics , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Prefrontal Cortex/metabolism , Depression/genetics , Brain/metabolism
12.
Emerg Microbes Infect ; 12(1): 2186608, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36880345

ABSTRACT

The GsGd lineage (A/goose/Guangdong/1/1996) H5N1 virus was introduced to Canada in 2021/2022 through the Atlantic and East Asia-Australasia/Pacific flyways by migratory birds. This was followed by unprecedented outbreaks affecting domestic and wild birds, with spillover into other animals. Here, we report sporadic cases of H5N1 in 40 free-living mesocarnivore species such as red foxes, striped skunks, and mink in Canada. The clinical presentations of the disease in mesocarnivores were consistent with central nervous system infection. This was supported by the presence of microscopic lesions and the presence of abundant IAV antigen by immunohistochemistry. Some red foxes that survived clinical infection developed anti-H5N1 antibodies. Phylogenetically, the H5N1 viruses from the mesocarnivore species belonged to clade 2.3.4.4b and had four different genome constellation patterns. The first group of viruses had wholly Eurasian (EA) genome segments. The other three groups were reassortant viruses containing genome segments derived from both North American (NAm) and EA influenza A viruses. Almost 17 percent of the H5N1 viruses had mammalian adaptive mutations (E627 K, E627V and D701N) in the polymerase basic protein 2 (PB2) subunit of the RNA polymerase complex. Other mutations that may favour adaptation to mammalian hosts were also present in other internal gene segments. The detection of these critical mutations in a large number of mammals within short duration after virus introduction inevitably highlights the need for continually monitoring and assessing mammalian-origin H5N1 clade 2.3.4.4b viruses for adaptive mutations, which potentially can facilitate virus replication, horizontal transmission and posing pandemic risks for humans.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza in Birds , Animals , Humans , Influenza A Virus, H5N1 Subtype/genetics , Foxes , Birds , Canada/epidemiology , Mutation , Phylogeny
13.
J Nutr ; 153(4): 1075-1088, 2023 04.
Article in English | MEDLINE | ID: mdl-36842935

ABSTRACT

BACKGROUND: Early-life nutritional exposures may contribute to offspring epigenetic modifications. However, few studies have evaluated parental dietary quality effects on offspring DNA methylation (DNAm). OBJECTIVES: We aim to fill this gap by elucidating the influence of maternal and paternal whole-diet quality and inflammatory potential on offspring DNAm in the Lifeways Cross-generation cohort. METHODS: Families (n = 1124) were recruited around 16 weeks of gestation in the Republic of Ireland between 2001 and 2003. Maternal dietary intake during the first trimester and paternal diet during the 12 previous months were assessed with an FFQ. Parental dietary inflammatory potential and quality were determined using the energy-adjusted Dietary Inflammatory Index (E-DII), the Healthy Eating Index-2015 (HEI-2015), and the maternal DASH score. DNAm in the saliva of 246 children at age nine was measured using the Illumina Infinium HumanMethylationEPIC array. DNAm-derived biomarkers of aging, the Pediatric-Buccal-Epigenetic clock and DNAm estimator of telomere length, were calculated. Parental diet associations with the DNAm concentrations of 850K Cytosine-phosphate-guanine sites (CpG sites) and with DNAm-derived biomarkers of aging were examined using an epigenome-wide association study and linear regressions, respectively. RESULTS: Maternal HEI-2015 scores were inversely associated with DNAm at CpG site (cg21840035) located near the PLEKHM1 gene, whose functions involve regulation of bone development (ß = -0.0036, per 1 point increase in the score; P = 5.6 × 10-8). Higher paternal HEI-2015 score was related to lower methylation at CpG site (cg22431767), located near cell signaling gene LUZP1 (ß = -0.0022, per 1 point increase in the score, P = 4.1 × 10-8). There were no associations with parental E-DII and DASH scores, and no evidence of major effects on biomarkers of aging. CONCLUSIONS: Parental dietary quality in the prenatal period, evaluated by the HEI-2015, may influence offspring DNAm during childhood. Further research to improve our understanding of parental nutritional programming is warranted.


Subject(s)
DNA Methylation , Diet , Pregnancy , Female , Humans , Child , Epigenesis, Genetic , Aging , Inflammation , Biomarkers
14.
Biomedicines ; 11(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36831050

ABSTRACT

A small subset of people with nephrotic syndrome (NS) have genetically driven disease. However, the disease mechanisms for the remaining majority are unknown. Epigenetic marks are reversible but stable regulators of gene expression with utility as biomarkers and therapeutic targets. We aimed to identify and assess all published human studies of epigenetic mechanisms in NS. PubMed (MEDLINE) and Embase were searched for original research articles examining any epigenetic mechanism in samples collected from people with steroid resistant NS, steroid sensitive NS, focal segmental glomerulosclerosis or minimal change disease. Study quality was assessed by using the Joanna Briggs Institute critical appraisal tools. Forty-nine studies met our inclusion criteria. The majority of these examined micro-RNAs (n = 35, 71%). Study quality was low, with only 23 deemed higher quality, and most of these included fewer than 100 patients and failed to validate findings in a second cohort. However, there were some promising concordant results between the studies; higher levels of serum miR-191 and miR-30c, and urinary miR-23b-3p and miR-30a-5p were observed in NS compared to controls. We have identified that the epigenome, particularly DNA methylation and histone modifications, has been understudied in NS. Large clinical studies, which utilise the latest high-throughput technologies and analytical pipelines, should focus on addressing this critical gap in the literature.

15.
Am J Epidemiol ; 192(5): 800-811, 2023 05 05.
Article in English | MEDLINE | ID: mdl-36721372

ABSTRACT

Motivated by our conduct of a literature review on social exposures and accelerated aging as measured by a growing number of epigenetic "clocks" (which estimate age via DNA methylation (DNAm) patterns), we report on 3 different approaches in the epidemiologic literature-1 incorrect and 2 correct-on the treatment of age in these and other studies using other common exposures (i.e., body mass index and alcohol consumption). Among the 50 empirical articles reviewed, the majority (n = 29; 58%) used the incorrect method of analyzing accelerated aging detrended for age as the outcome and did not control for age as a covariate. By contrast, only 42% used correct methods, which are either to analyze accelerated aging detrended for age as the outcome and control for age as a covariate (n = 16; 32%) or to analyze raw DNAm age as the outcome and control for age as a covariate (n = 5; 10%). In accord with prior demonstrations of bias introduced by use of the incorrect approach, we provide simulation analyses and additional empirical analyses to illustrate how the incorrect method can lead to bias towards the null, and we discuss implications for extant research and recommendations for best practices.


Subject(s)
Aging , Epigenesis, Genetic , Humans , Aging/genetics , DNA Methylation , Epigenomics , Body Mass Index
17.
medRxiv ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38168159

ABSTRACT

Importance: Epigenetic accelerated aging is associated with exposure to social and economic adversity and may increase risk of premature morbidity and mortality. However, no studies have included measures of structural racism and few have compared estimates within or across the 1st and 2nd generation of epigenetic clocks (the latter additionally trained on phenotypic data). Objective: To determine if accelerated epigenetic aging is associated with exposures to diverse measures of racialized, economic, and environmental injustice measured at different levels and time periods. Design: Cross-sectional My Body My Story Study (MBMS; US, 2008-2010) and Exam 5 Multi-Ethnic Atherosclerosis Study (MESA; US, 2010-2012). MBMS DNA extraction: 2021; linkage of structural measures to MBMS and MESA: 2022. Setting: MBMS recruited a random sample of US-born Black non-Hispanic (BNH) and white non-Hispanic (WNH) participants from 4 community health centers in Boston, MA. The MESA Exam 5 epigenetic component included 975 randomly selected US-born BNH, WNH, and Hispanic participants from four field sites: Baltimore, MD; Forsyth County, NC; New York City, NY; St. Paul, MN. Participants: US-born persons (MBMS: 224 BNH, 69 WNH; MESA: 229 BNH, 555 WNH, 191 Hispanic). Main outcome and measures: 10 epigenetic clocks (six 1st generation; four 2nd generation), computed using DNA methylation data (DNAm) from blood spots (MBMS; N = 293) and purified monocytes (MESA; N = 975). Results: Among Black non-Hispanic MBMS participants, epigenetic age acceleration was associated with being born in a Jim Crow state by 0.14 standard deviations (95% confidence interval [CI] 0.00, 0.27) and with birth state conservatism (0.06, 95% CI 0.00, 0.05), pooling across all clocks, as was low parental education for both Black non-Hispanic and white non-Hispanic MBMS participants (respectively: 0.24, 95% CI 0.08, 0.39, and 0.27, 95% CI 0.03, 0.51. Adult impoverishment was positively associated with the pooled 2nd generation clocks among the MESA participants (Black non-Hispanic: 0.06, 95% CI 0.01, 0.12; white non-Hispanic: 0.05, 95% CI 0.01, 0.08; Hispanic: 0.07, 95% CI 0.01, 0.14). Conclusions and Relevance: Epigenetic accelerated aging may be one of the biological mechanisms linking exposure to racialized and economic injustice to well-documented inequities in premature morbidity and mortality.

18.
Nat Microbiol ; 7(12): 2011-2024, 2022 12.
Article in English | MEDLINE | ID: mdl-36357713

ABSTRACT

Wildlife reservoirs of broad-host-range viruses have the potential to enable evolution of viral variants that can emerge to infect humans. In North America, there is phylogenomic evidence of continual transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to white-tailed deer (Odocoileus virginianus) through unknown means, but no evidence of transmission from deer to humans. We carried out an observational surveillance study in Ontario, Canada during November and December 2021 (n = 300 deer) and identified a highly divergent lineage of SARS-CoV-2 in white-tailed deer (B.1.641). This lineage is one of the most divergent SARS-CoV-2 lineages identified so far, with 76 mutations (including 37 previously associated with non-human mammalian hosts). From a set of five complete and two partial deer-derived viral genomes we applied phylogenomic, recombination, selection and mutation spectrum analyses, which provided evidence for evolution and transmission in deer and a shared ancestry with mink-derived virus. Our analysis also revealed an epidemiologically linked human infection. Taken together, our findings provide evidence for sustained evolution of SARS-CoV-2 in white-tailed deer and of deer-to-human transmission.


Subject(s)
COVID-19 , Deer , Animals , Humans , SARS-CoV-2/genetics
19.
Epigenetics ; 17(13): 2366-2376, 2022 12.
Article in English | MEDLINE | ID: mdl-36239035

ABSTRACT

DNA methylation (DNAm) is commonly assayed using the Illumina Infinium MethylationEPIC BeadChip, but there is currently little published evidence to define the lower limits of the amount of DNA that can be used whilst preserving data quality. Such evidence is valuable for analyses utilizing precious or limited DNA sources. We used a single pooled sample of DNA in quadruplicate at three dilutions to define replicability and noise, and an independent population dataset of 328 individuals (from a community-based study including US-born non-Hispanic Black and white persons) to assess the impact of total DNA input on the quality of data generated using the Illumina Infinium MethylationEPIC BeadChip. We found that data are less reliable and more noisy as DNA input decreases to 40ng, with clear reductions in data quality; and that low DNA input is associated with a reduction in power to detect EWAS associations, requiring larger sample sizes. We conclude that DNA input as low as 40ng can be used with the Illumina Infinium MethylationEPIC BeadChip, provided quality checks and sensitivity analyses are undertaken.


Subject(s)
DNA Methylation , DNA , Humans , CpG Islands , Oligonucleotide Array Sequence Analysis , Reproducibility of Results , DNA/genetics
20.
J Clin Endocrinol Metab ; 108(1): 85-98, 2022 12 17.
Article in English | MEDLINE | ID: mdl-36137169

ABSTRACT

CONTEXT: Maternal dysglycaemia and prepregnancy obesity are associated with adverse offspring outcomes. Epigenetic mechanisms such as DNA methylation (DNAm) could contribute. OBJECTIVE: To examine relationships between maternal glycaemia, insulinemic status, and dietary glycemic indices during pregnancy and an antenatal behavioral-lifestyle intervention with newborn DNAm. METHODS: We investigated 172 women from a randomized controlled trial of a lifestyle intervention in pregnant women who were overweight or obese. Fasting glucose and insulin concentrations and derived indices of insulin resistance (HOMA-IR), ß-cell function (HOMA-%B), and insulin sensitivity were determined at baseline (15) and 28 weeks' gestation. Dietary glycemic load (GL) and index (GI) were calculated from 3-day food diaries. Newborn cord blood DNAm levels of 850K CpG sites were measured using the Illumina Infinium HumanMethylationEPIC array. Associations of each biomarker, dietary index and intervention with DNAm were examined. RESULTS: Early pregnancy HOMA-IR and HOMA-%B were associated with lower DNAm at CpG sites cg03158092 and cg05985988, respectively. Early pregnancy insulin sensitivity was associated with higher DNAm at cg04976151. Higher late pregnancy insulin concentrations and GL scores were positively associated with DNAm at CpGs cg12082129 and cg11955198 and changes in maternal GI with lower DNAm at CpG cg03403995 (Bonferroni corrected P < 5.99 × 10-8). These later associations were located at genes previously implicated in growth or regulation of insulin processes. No effects of the intervention on cord blood DNAm were observed. None of our findings were replicated in previous studies. CONCLUSION: Among women who were overweight or obese, maternal pregnancy dietary glycemic indices, glucose, and insulin homeostasis were associated with modest changes in their newborn methylome. TRIAL REGISTRATION: ISRCTN29316280.


Subject(s)
Insulin Resistance , Overweight , Infant, Newborn , Female , Pregnancy , Humans , Overweight/genetics , Overweight/therapy , DNA Methylation , Obesity/genetics , Obesity/therapy , Insulin , Glucose
SELECTION OF CITATIONS
SEARCH DETAIL
...